

OCR (A) A-Level Physics 6.2 Electric Fields Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define Electric Field

Define Electric Field

A region of space in which charged particles are subject to an electrostatic force.

What shape of field do point charges have?

What shape of field do point charges have?

Radial fields.

How can you model uniformly charged spheres?

How can you model uniformly charged spheres?

As a point charge at the centre of the sphere.

What do field lines show?

What do field lines show?

The path a positive test charge would take when placed in an Electric Field.

Which direction do the field lines point?

Which direction do the field lines point?

Positive to negative – the lines always point away from a positive charge and towards a negative charge.

What effect does distance have on the strength of the electrostatic force?

What effect does distance have on the strength of the electrostatic force?

The greater the distance, the weaker the force.

How is the strength of an Electric Field represented in a diagram?

How is the strength of an Electric Field represented in a diagram?

By how close together the field lines are – the closer the lines, the stronger the field.

Define Electric Field Strength

Define Electric Field Strength

Force per unit charge on a positive test charge placed in the field.

What is the formula for Electric Field Strength?

What is the formula for Electric Field Strength?

$E = F \div Q$

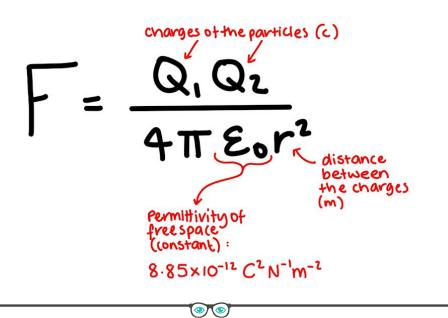
- E = Electric Field strength (NC⁻¹)
- F = Force(N)

Q = Charge(C)

What is Coulomb's Law?

What is Coulomb's Law?

The force between any two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.

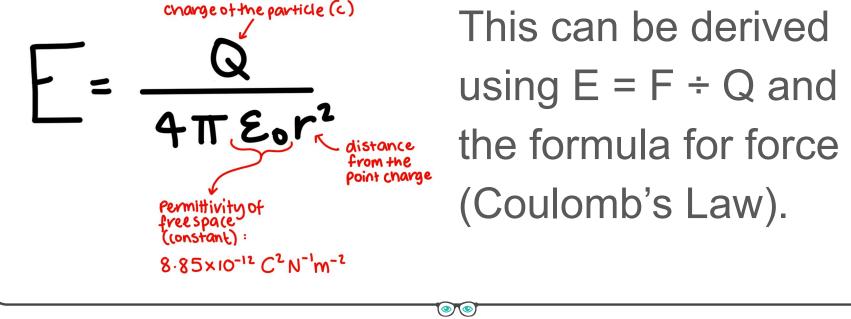

What is the formula for the force between two point charges? (Coulomb's Law)

What is the formula for the force between two point charges? (Coulomb's Law)

Define permittivity

Define permittivity

The ability of a material to transmit an Electric Field (how easily the atoms become polarised).


What is the formula for the Electric Field Strength of a point charge?

What is the formula for the Electric Field Strength of a point charge?

DOG PMTEducation

www.pmt.education

Name some similarities between Gravitational and Electric Fields

Name some similarities between Gravitational and Electric Fields

• Both follow the inverse square law for the force.

www.pmt.education

- Point masses and point charges both produce a radial field.
- Newton's law and Coulomb's law formulae for force are very similar:

D PMTEducation

• Field strength is defined by force per unit charge/mass.

Name some differences between Gravitational and Electric Fields

Name some differences between Gravitational and Electric Fields

- Gravitational fields are always attractive, Electric Fields can be attractive or repulsive (depending on the charge).
- The constants of proportionality in Newton's Law and Coulomb's Law are different:

D

Of Station

🕟 www.pmt.education

Coulombs Law: $F = \frac{1}{4\pi\epsilon_{0}} \times \frac{Q_{1}Q_{2}}{r^{2}}$ $F = G \times \frac{m_{1}m_{2}}{r^{2}}$ different constant of proportionality

What is the formula for the work done when moving a charge in an Electric Field?

What is the formula for the work done when moving a charge in an Electric Field?

Work done = Force x Distance moved

Define potential at a point in an Electric Field

Define potential at a point in an Electric Field

The work done per unit charge in moving a positive test charge from infinity to that point in the Electric Field.

What is the formula for the potential at a point in an Electric Field?

What is the formula for the potential at a point in an Electric Field?

$$V = W \div Q$$

V = Potential (V)

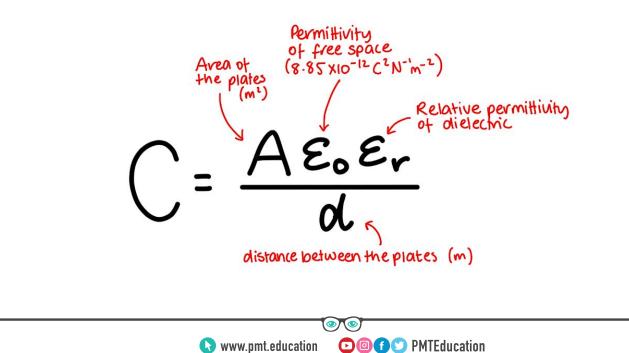
- W = Work done in moving the particle (J)
- Q = Charge of the particle (C)

What is the formula for the potential between two parallel plates?

What is the formula for the potential between two parallel plates?

$$V = E \times d$$

- V = Potential (V)
- E = Electric Field strength (NC⁻¹)
- d = distance between the plates (m)


What is the formula for the capacitance of a parallel plate capacitor?

What is the formula for the capacitance of a parallel plate capacitor?

What can the motion of charged particles in an Electric Field be modelled as?

What can the motion of charged particles in an Electric Field be modelled as?

Projectile motion: the two components of velocity are independent of each other.

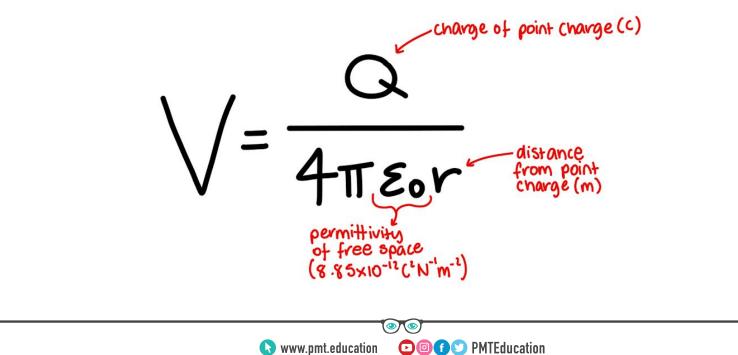
Velocity perpendicular to the field is not affected, velocity parallel to the field is.

How do you calculate the parallel component of velocity for a charged particle in a uniform Electric Field?

How do you calculate the parallel component of velocity for a charged particle in a uniform Electric Field?

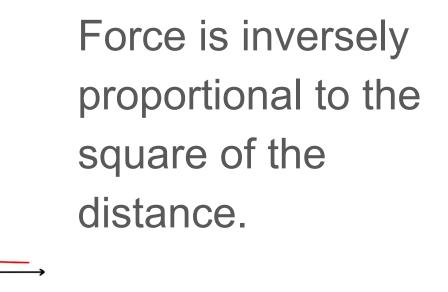
- First, calculate the time the particle is in the field (using time = distance/speed, where distance = length of charged plates and speed = velocity perpendicular to the field).
- Use a = F/m and F=Eq to calculate the acceleration of the particle while it is in the field (a = Eq / m).
- 3. Substitute these values into V = u + at where u is the initial parallel velocity and V is the final parallel velocity.

PMTEducation


What is the formula for the potential near a point charge? (Coulomb's Law)

What is the formula for the potential near a point charge? (Coulomb's Law)

What does the force-distance graph for a point/spherical charge look like?

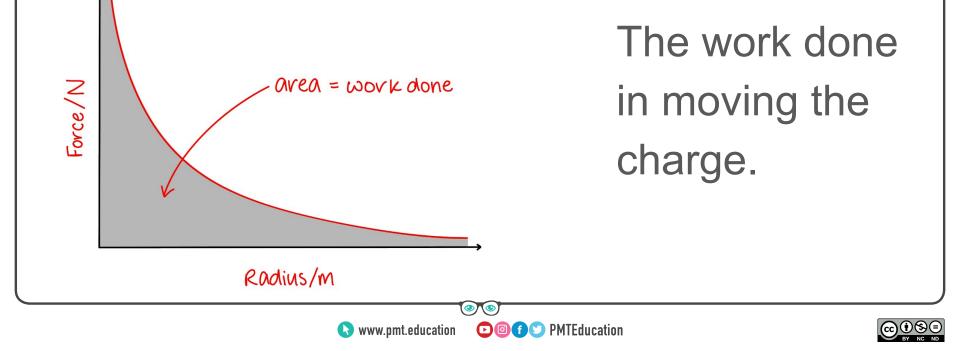


DOG PMTEducation

What does the force-distance graph for a point/spherical charge look like?

www.pmt.education

Force/N


What does the area under a force-distance graph for a point/spherical charge represent?

What does the area under a force-distance graph for a point/spherical charge represent?

What is the formula for electric potential energy near a point charge?

What is the formula for electric potential energy near a point charge?

$$E = V x q$$

DOG PMTEducation

- E = electric potential energy (J)
- V = potential (V)
- q = charge of the point charge (C)

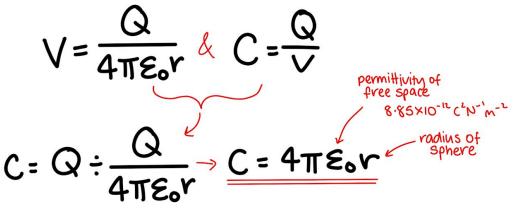
www.pmt.education

What is the formula for the capacitance of an isolated sphere?

What is the formula for the capacitance of an isolated sphere?

Isolated spheres can store charge, so technically they can be classed as capacitors.

D

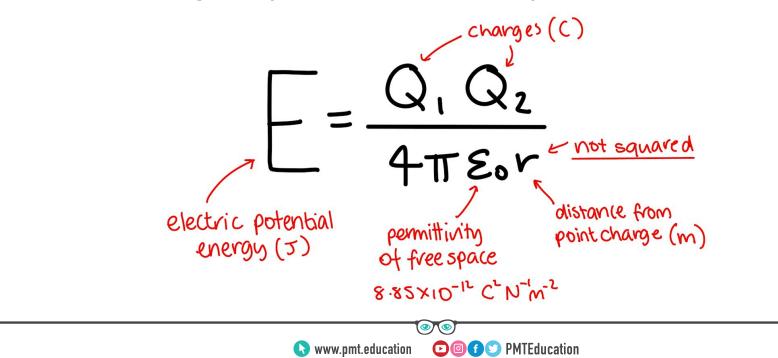

Of Station

Using $C = Q \div V$ and the

formula for V (in terms of

Coulomb's law), you can derive the formula for

capacitance:


What is the formula for electric potential energy near a point charge? (Coulomb's Law)

What is the formula for electric potential energy near a point charge? (Coulomb's Law)

